BASIC STRUCTURAL ANALYSIS CIVIL ENGINEERING VIRTUAL LABORATORY

EXPERIMENT: 3

CONTINUOUS BEAMS

INTRODUCTION:

Continuous beams, which are beams with more than two supports and covering more than one span, are not statically determinate using the static equilibrium laws

e = strain σ = stress (N/m²) E = Young's Modulus = σ /e (N/m²) y = distance of surface from neutral surface (m). R = Radius of neutral axis (m). I = Moment of Inertia (m⁴ - more normally cm⁴) Z = section modulus = I/y _{max}(m³ - more normally cm³) M = Moment (Nm) w = Distributed load on beam (kg/m) or (N/m as force units) W = total load on beam (kg) or (N as force units) F = Concentrated force on beam (N) L = length of beam (m) x = distance along beam (m)

OBJECTIVE:

To find the shear force diagram and bending moment diagram for a given continuous beam.

THEORY:

Beams placed on more than 2 supports are called continuous beams. Continuous beams are used when the span of the beam is very large, deflection under each rigid support will be equal zero.

BMD for Continuous beams:

BMD for continuous beams can be obtained by superimposing the fixed end moments diagram over the free bending moment diagram.

Three - moment Equation for continuous beams THREE MOMENT EQUATION

$$M_{A}\left(\frac{L_{I}}{E_{I}I_{I}}\right) + 2M_{B}\left(\frac{L_{I}}{E_{I}I_{I}} + \frac{L_{2}}{E_{2}I_{2}}\right) + M_{C}\left(\frac{L_{2}}{E_{2}I_{2}}\right)$$
$$= \frac{-6a_{I}\overline{x_{I}}}{E_{I}I_{I}L_{I}} - \frac{6a_{2}\overline{x_{2}}}{E_{2}I_{2}L_{2}} - 6\left[\frac{\delta_{A} - \delta_{B}}{L_{I}} + \frac{\delta_{C} - \delta_{B}}{L_{2}}\right]$$

The above equation is called generalized 3-moments Equation. MA, MB and Mc are support moments E1, E2 \rightarrow Young's modulus of Elasticity of 2 Spans.

I₁, I₂ \rightarrow M O I of 2 spans,

a1, a2 \rightarrow Areas of free B.M.D.

 $_{1\,2}x$ and $x \rightarrow$ Distance of free B.M.D. from the end supports, or outer supports. (A and C)

 δ_{A} , δ_{B} and $\delta_{C} \rightarrow$ are sinking or settlements of support from their initial position.

Normally Young's modulus of Elasticity will be same throughout than the Equation reduces to

$$M_{A}\left(\frac{L_{1}}{I_{1}}\right)+2M_{B}\left(\frac{L_{1}}{I_{1}}+\frac{L_{2}}{I_{2}}\right)+M_{C}\left(\frac{L_{2}}{I_{2}}\right)$$
$$=\frac{-6a_{1}\overline{x_{1}}}{I_{1}L_{1}}-\frac{6a_{2}\overline{x_{2}}}{I_{2}L_{2}}-6\left[\frac{\delta_{A}-\delta_{B}}{L_{1}}+\frac{\delta_{C}-\delta_{B}}{L_{2}}\right]$$

If the supports are rigid then $\Box A = \Box B = \Box C = 0$

$$M_{A}L_{1} + 2M_{B}(L_{1} + L_{2}) + M_{C}L_{2} = \frac{-6a_{1}\overline{x_{1}}}{L_{1}} - \frac{6a_{2}\overline{x_{2}}}{L_{2}}$$

Note:

1.

2.

 $M_C = -WL_3$

If three is overhang portion then support moment near the overhang can be Computed directly. 3.

If the end supports are fixed assume an extended span of zero length and apply

3- Moment equation.

NOTE:

i)

Observation Table:

Section type	Types of loads	Length of member (L)	Breadt h(b)	Depth(d)	Weight (W)	At a distance from section 'X'	Bendin g Momen t (Knm)	S.F (Kn)	Deflectio n(Delta)
continuo' s beams	Two Equal Spans – Uniform Load on One Span								
	Two Equal Spans – Concentrat ed Load at Center of One Span								

BSA-CEVL	
-----------------	--

Two Equal Spans – Concentrat ed Load at Any Point				
Two Equal Spans – Uniformly Distributed Load				
Two Equal Spans – Two Equal Concentrat ed Loads Symmetrica Ily Placed				
Two Unequal Spans – Uniformly Distributed Load				
Two Unequal Spans – Concentrat ed Load on Each Span Symmetrica Ily Placed				

Output:

1. Bending moment_____ (Knm)

2. Shear Force_____(KN)

3 Deflections_____(Yc)

References:

- 1. Theory of Structures volume: 1 by S.P.Guptha and G.S.Pandit
- 2. Reference taken from N.D.S.

PART – 2 ANIMATION STEPS

PART – 3 VIRTUAL LAB FRAME